

Next Generation of High Frequency Power Converters

Zhe Zhang

Associate Professor, Ph.D. Technical University of Denmark

zz@elektro.dtu.dk

 $f(x+\Delta x) = \sum_{i=0}^{\infty} \frac{(\Delta x)^{i}}{i!} f^{(i)}(x) a^{i} = \sum_{a=0}^{\infty} \frac{(\Delta x)^{i}}{a} x^{2} + \sum_{a=0}^{\infty} \frac{(\Delta x)^{i}}{2} x^{2} + \sum_{a=$

DTU Electrical Engineering Department of Electrical Engineering

Agenda

- 1 Introduction
- 2 High frequency power conversion
- 3 Very High Frequency Switched-Mode Power Supplies (DC-DC)
- 4 Single-Phase Power Factor Correction (AC-DC)
- 5 PV inverters (DC-AC)
- 6 Challenges/opportunities
- 7 Summary

Power converters everywhere

3 DTU Electrical Engineering, Technical University of Denmark

Electronics Group

Motivation

- Passive components dominate the size and price
- Lifespan limited by electrolytic capacitors
- Heavy magnetic components

- All drawbacks are directly linked to the passive energy storing elements
 - They scale directly with switching frequency

Additional benefits

- The highly elevated switching frequency will lead to:
 - Reduced size & weight
 - Decreased cost
 - Faster transient response
 - No electrolytic capacitors -> Increased reliability
 - No magnetic core -> Less dependent on rare earth materials

Increasing the frequency

Resonant converters

- Soft-switching topologies (fx. LLC converters), common operation:
 - Step down, several 100's of volts to 10's of volts
 - 400-4000 W output power
 - Switching frequencies up to ≈ 1 MHz
 - Efficiencies up to $\approx 96\%$
 - Power density up to 50 W/cm³

Wide Band Gap Semiconductors

- Higher operating temperatures
- Higher power densities
- Higher voltages
- Higher frequencies

Summary

Source: Mickey P. Madsen, " Very high frequency switch-mode power supplies," PhD Thesis, 2015

Very High Frequency (30-300 MHz) Power Converters

- Mickey Madsen
- At VHF the switching losses becomes severe and results in unacceptable losses
- Resonant converters with ZVS capabilities are therefore used to eliminate these losses
- The converter is designed in two parts; a resonant inverter and a resonant rectifier

Increased voltage and power

- The voltage stress in the single switch topologies are very high
- Half bridge topologies are more suitable for increased voltage levels
- As the peak voltage is reduced so is the resonating currents, the k factor is hence lower for this topology
- This requires a high side gate drive, but the number of inductors is reduced an higher power densities are therefore expected

Class ϕ_2 vs DE inverter

Class ϕ_2 Component count		Class DE	
1	MOSFETs	2	
3	Inductors	1	
3 (2)	Capacitors	3 (1) ()	
	MOSFET stress		
$\approx 2.5 \times V_{IN}$	Voltage stress	V _{IN}	
$V_2 C_{OSS} (2.5 \times V_{IN})^2$	Peak C _{oss} energy	$V_2 C_{OSS} V_{IN}^2$	

Fundamental drawbacks

 6.25 times more energy in C_{os} Larger resonating currents due to 3rd harmonics Difficult to achieve high efficiency at low power 3 times as many inductors 	 Requires a high side gate drive (Two MOSFETs, but with lower voltage rating)
12 DTU Electrical Engineering, Technical University of Denma	ark Electronics Group

Additional harmonics

High side gate drive

- The same principle can be applied to a high side MOSFET
- Only two additional components
 - $\rm C_{G1}$ insure that the bias voltage has the source of the high side as reference
 - $-L_{H}$ make a pure dc path enabling control of the average bias voltage.

First half bridge implementation

- The worlds first discrete VHF half bridge converter
- Peak efficiency above 85%
- Input voltage up to 150 V
- Output power up to 16 W at 40 V
- Power density of 1.5 W/cm³
- Box volume of 50 x 17 x 12 mm

Low side switch and gate drive

Resonant tank

Electronics Group

Conclusion

Parameter	Commercial	Thesis result	Improvement
Power	20 W	20 W	0%
Efficiency	85%	89.5%	4.5%
Size	33 cm ³	9.9 cm ³	70%
Weight	53 g	10 g	81%
Cost	≈\$3.2	≈\$1.4	56%

GaN-Based Single-Phase PFC

Electronics Group

T-Type Inverter w. SiC

- Alexander Anthon
- Three-level topology
- Efficiency suffers from switching losses at high frequency;
- SiC devices replace Si devices (depending on operation)

T-Type Inverter w. SiC- cont'd

- For a given inverter, retain its electrical design and use the increased overall efficiency;
- Reduce the heat sink requirement to reduce the converter volume;
- Increase the power rating of the inverter for the same heatsink design in order to increase its power density;
- Increase the inverter switching frequency, with a consequential reduction in filter component sizes.

The Hybrid-NPC alternative (w/o SiC)

- or add 600V CoolMos devices in addition to the conventional T-Type topology
- 600V CoolMos devices aim to support the commutation events

The Hybrid-NPC alternative (w/o SiC)- cont'd

- As expected, Si based T-Type converter has highest losses
 - Also highest loss increase with increased switching frequency
- Both SiC based T-Type and Hybrid-NPC can significantly reduce the semiconductor losses
- Using the semiconductor devices in this work, the SiC based T-Type can achieve lowest losses of all investigated alternatives

SiC-Based DC-DC Converter

Student project #1

- Boost converter
- SiC switch and diode
- Maximum 3.2 kW
- 400V input→600V output

Educating the Next Generation of Engineers!

10-MHz non-isolated Bidirectional DC-DC

Student project #2

- GaN based converter
- 24V to 60V input/output, and 100 W output
- Switching frequency up to 10-MHz
- 6.2W/cm3
- A conference paper in the coming APEC 2017

Challenges/Opportunities

- New converter topologies (soft-switching)
- Efficient gate drives (embedded)
- Accurate zero-voltage-switching control—Timing challenges@fs>1MHz
- Advanced digital control circuits
- HF Magnetics, in particular for high-power application (>10 kW)
- High Bandwidth Sensors
- Packaging/Integration (3D)
- Thermal management (3D)

Electronics Group

During this IEPE, at DTU

- 4 PhD projects
- Over 10 MSc and BSc thesis projects
- Over 30 scientific publications
- 5 Patents
- 1 Spinoff company—Nordic Power Converter
- Several awards/prizes
- Industrial Cooperation: Danfoss, Grundfos

Nordic Power Converters

Powering a brighter future™

Electronics Group

Department of Electrical Engineering